. 0591-22862062 2015 7 20 1.

2.

1.

								2013.10			
									:	52	
		/							18695	5716163	
						•		•			
	1										
	2										
	3										
	4										
	5										
	6										
	7										
	20	012/10 -									
		007/1 -2012/10									
	10	998/9/-2007/12					/				
		996/9 -1998/8					/				

	100 70 SCI
	PPAP 60
	Bioinformatics 6 Briefings in Bioinformatics 3 Human Mutation
	Molecular Cancer Therapeutics 2 Oncotarget 3
	1
	2 985
	g
	3 " " 2014 7 26 -28
	8 ()
	2015
	2 2003
	3 2002
	4 . 2001
	5 . 2000
	6 , ; 1998
	7 1997
	8
	1996
	1
	2 2010

	2										
		2					2	2008			
	3										
		2	2005								
	4									2	1998
	5										
				2	199	97					
	6	PPAP3	.0	_							
	Ü		.0	1	199	96					
				1	1//	.0					
	1			(0127221	N/20:	1410	017.10	3\			
	1			(81372213	5)(20.	14.1-2	2017.12	2)			
	mRNA	miRNA	DNA							6	5
	2					(91	02971	7) 20	011.1-20	13.12	
							60				
	3			(81071646)	20	11.1-2	2013.1	2			
					32						
	4				((2011)	23071	10011)	2012.1	-2014	.12
									1:		
					3	16	SCI		10		
	1	Wana II (os II A	Ao I Van H	71. a -	w): I (7 V (7 I	4:: 4	المسائلة،
		wang H (91 H A	AO I YAN H	∠ na∩	· w (л I (TII Y (THO / IN	(11V1(11)	1211766

- 1. Wang H, Cai H, Ao L, Yan H, Zhao W, Qi L, Gu Y, Guo Z.Individualized identification of disease-associated pathways with disrupted coordination of gene expression. Brief Bioinform. 2015 May 27. pii: bbv030. (SCI IF= 9.617)
- 2. Yunyan Gu*#, Mengmeng Zhang*, FuduanPeng, Lei Fang, Yuanyuan Zhang, Haihai Liang, Wenbin Zhou, Lu Ao, ZhengGuo*. The BRCA1/2-directed miRNA signature predicts a good prognosis in ovarian cancer patients with wild-type BRCA1/2.Oncotarget. 2015, 6(4): 2397-2406. (SCI IF=6.63)
- 3. Lu Ao¹, Haidan Yan¹, Tingting Zheng², Hongwei Wang³, Mengsha Tong¹, Qingzhou Guan¹, Xiangyu Li¹, Hao Cai¹, Mengyao Li¹, Zheng Guo^{1,3,*} Identification of reproducible drug-resistance-related dysregulated genes in small-scal e cancer cell line experiments.Sci Rep. 2015 15; :11895. doi: 10.1038/srep11895. (SCI IF=5.578)
 - 4. Hongwei Wang, Qiang Sun, Wenyuan Zhao, Lishuang Qi, YunyanGu, Pengfei Li, Mengmeng Zhang, Yang Li, Shu-Lin Liu*, ZhengGuo*. Individual-level

- analysis of differential expression of genes and pathways for personalized medicine. Bioinformatics, 2015, 31(1): 62-68. (SCI IF=)
- Chen, Guini 5. Hongdong Li, TingtingZheng,Beibei Hong, Wenjing Zhang, Shan Li, Lu Ao, Chenguang Wang, Zheng Guo*. Similar blood-borne DNA methylation alterations in cancer and inflammatory diseases determined by subpopulation shifts in peripheral leukocytes.Br Cancer. 2014 Jul 29;111(3):525-31.(SCI IF=4.82)
- 6. Guini Hong, Wenjing Zhang, Hongdong Li, XiaopeiShen, ZhengGuo*. Separate enrichment analysis of pathways for up- and downregulated genes. Journal of the Royal Society Interface. 2013;11(92):1-12.(SCI IF=4.907)
- 7. Xianxiao Zhou, Bailiang Li, Yuannv Zhang, YunyanGu, Beibei Chen, Tongwei Shi, Lu Ao, Pengfei Li, Shan Li, Chunyang Liu, ZhengGuo

			ı

4	81271822	X L-FABP NQO1		2013- 2016	95
5	81201293	TGF 1I1		2013- 2016	23
6	81271784	1-integrin		2013- 2016	80
7	2012ZX1 0002002 -004-006			2012- 2015	46
8	81401657	USP15 X		2015- 2017	23
9	2012J011 30			2012- 2014	4
10	2012J013 65	ECSIT 1b(IL-1b)		2012- 2014	4

12 WKJ-FJ- 29 2013- 2016 27 13 81170624 2012- 2015 65	11	20123518 120003	1b	X		2013- 2015	4
13 81170624 65	12						27
	13	81170624					65

	Individualized identification of disease-associated pathways with disrupted coordination of gene expression.	Brief Bioinform, 2015, pii: bbv030
	Individual-level analysis of differential expression of genes and pathways for personalized medicine.	Bioinformatics, 2015, 31(1) 62-68
	The BRCA1/2-directed miRNA signature predicts a good prognosis in ovarian cancer patients with wild-type BRCA1/2	Oncotarget, 2015, 6(4) 2397-2406
	Autophagy-related prognostic signature for breast cancer.	Molecular Carcinogenesis. 2015, doi: 10.1002/mc.22278.
	-specific antagonist on mouse preimplantation embryo development and zygotic genome activation	J Steroid Biochem Mol Biol, 2015, 145(1):13-20

	Identification of reproducible drug-resista	Sci Rep, 2015,
	nce-related dysregulated genes in small-s	Doi: 10.1038/srep11
	cale cancer cell line experiments	895
	Application of the rank-based method to	Gene, 2015, 555:
	DNA methylation for cancer diagnosis	203-207
	Hepatitis B virus core protein inhibits	
	Fas-mediated apoptosis of hepatoma cells	FASEB J, 2015, 29:
	via regulation of mFas/FasL and sFas	1113-1123
	expression	
	Transcriptional regulation of the	D: 1: : : : : : : : : : : : : : : : : :
	apolipoprotein F (ApoF) gene by ETS	Biochimie, 2015,
	and C/EBPalpha in hepatoma cells	112: 1-9
	Hepatitis B virus X protein increases the	
	IL-1beta-induced NF-kappaB activation	
	via interaction with evolutionarily	Virus Res, 2015,
	conserved signaling intermediate in Toll	195: 236-245
	pathways (ECSIT)	
	A relative ordering-based predictor for	Breast Cancer
	tamoxifen-treated estrogen	Research and
	receptor-positive breast cancer patients:	Treatment,
	multi-laboratory cohort validation.	2013;142(3):505-14
	Deconvolution of the gene expression	
	profiles of valuable banked blood	
	specimens for studying the prognostic	PLoS One, 2014,
	values of altered peripheral immune cell	9(6):e100934
	proportions in cancer patients	
	Similar blood-borne DNA methylation	
	alterations in cancer and inflammatory	Br J Cancer, 2014,
	diseases determined by subpopulation	111(3):525-31
	shifts in peripheral leukocytes	
	Similar source of differential blood	
	mRNAs in lung cancer and pulmonary	PLoS One, 2014,
	inflammatory diseases: calls for	9(9):e108104
	minimized y discusses. Sulls 101	

improved strategy for identifying	
cancer-specific biomarkers	
MTTP polymorphisms and susceptibility	Liver Int, 2014, 34:
to non-alcoholic fatty liver disease in a	118-128
Han Chinese population	110-120
Establishment of and comparison	
between orthotopic xenograft and	Asian Pac J Cancer
subcutaneous xenograft models of	Prev, 2014,
gallbladder carcinoma	15(8):3747-52
Helicobacter pylori outer inflammatory	
protein DNA vaccine-loaded bacterial	Vaccine, 2014,
ghost enhances immune protective	(32):6054-6060
	(32).0034-0000
efficacy in C57BL/6 mice	T 1 C
The detection of risk pathways, regulated	Journal of
by miRNAs, via the integration of	Biomedical
sample-matched miRNA-mRNA profiles	Informatics,
 and pathway structure	2014,49: 187-197
Functional comparison between genes	PLos One, 2013,
dysregulated in ulcerative colitis and	8(8):e71989-e71989
colorectal carcinoma	0(0).071707 071707
Genes Dysregulated to Different Extent	
or Oppositely in Estrogen	PLos One, 2013,
Receptor-Positive and Estrogen	8(7):1-10
Receptor-Negative Breast Cancers	
Rank-basedpredictors for response and	
prognosis of	Breast Cancer Res
neoadjuvanttaxane-anthracycline-based	Treat, 2013,
chemotherapy in breast cancer.	139(2):361-9
An Integrated Approach to Uncover	
Driver Genes in Breast Cancer	PLos One, 2013,
Methylation Genomes	8(4):1-15
	Mologular
Network analysis of genomic alteration	Molecular
profiles reveals co-altered functional	Biosystems, 2013,
modules and driver genes for	9(3):467-477

glioblastoma								
				rate enrichment		thways	Journal of the Royal Society Interface, 2013, 11(92):1-12.	
						/	/	
23				2	150		23325	
	1		3	4			0	
				1			3	
							23	
							23	
						1		
			2		(3)			
	1							
	2							
	3							
	4							

512			
M^2			
320	120	400.98	>97%
400.98			
320			

2.		
2-1		

2-2

3,

	2			
	3			
	4			
2-5				
2-3				
	4			
	1			
	_			23
	2			
	3			
				10
	4			
	5	3	3	
	5			18
	5 6			
	7			1
	8			

3.

3-1			
		150	
1	50		
2	100		
3-2			
		150	
1		15	
2		100	
1		10	
2		35	
3		35	
4			10
5		10	
3		35	
1		20	
2		_	10
3		5	

4.		